skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zheng, Qi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 14, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. Estimating healthcare expenditures is important for policymakers and clinicians. The expenditure of patients facing a life-threatening illness can often be segmented into four distinct phases: diagnosis, treatment, stable, and terminal phases. The diagnosis phase encompasses healthcare expenses incurred prior to the disease diagnosis, attributed to frequent healthcare visits and diagnostic tests. The second phase, following diagnosis, typically witnesses high expenditure due to various treatments, gradually tapering off over time and stabilizing into a stable phase, and eventually to a terminal phase. In this project, we introduce a pre-disease phase preceding the diagnosis phase, serving as a baseline for healthcare expenditure, and thus propose a five-phase to evaluate the healthcare expenditures. We use a piecewise linear model with three population-level change points and $4p$ subject-level parameters to capture expenditure trajectories and identify transitions between phases, where p is the number of covariates. To estimate the model’s coefficients, we apply generalized estimating equations, while a grid-search approach is used to estimate the change-point parameters by minimizing the residual sum of squares. In our analysis of expenditures for stages I–III pancreatic cancer patients using the SEER-Medicare database, we find that the diagnostic phase begins one month before diagnosis, followed by an initial treatment phase lasting three months. The stable phase continues until eight months before death, at which point the terminal phase begins, marked by a renewed increase in expenditures. 
    more » « less
    Free, publicly-accessible full text available December 3, 2025
  4. Abstract The rapid and environmentally benign synthesis of metal‐immobilized covalent organic frameworks (metal/COFs) for heterogeneous catalysis is a pervasive challenge, as the mainstream synthesis is exceedingly time‐consuming (up to four days) and demands the use of hazardous solvents. Herein, we describe a sustainable and efficient one‐step sonochemical strategy for constructing diverse palladium (II)‐immobilized COFs (Pd(II)/COFs). By merging the sonochemistry‐assisted COF synthesis and in situ Pd (II) immobilization into a single step, this strategy enables the rapid formation of Pd(II)/COF hybrids within an hour under ambient conditions using water as the solvent. Notably, gram‐scale synthesis of Pd(II)/COFs is achievable. The resulting Pd(II)/COFs exhibit superb crystallinity and high surface area, leading to remarkable activity, excellent functionality tolerance, and high recyclability for the Suzuki–Miyaura cross‐coupling reaction of aryl bromides and arylboronic acids at room temperature. This one‐step sonochemical strategy effectively addresses the long‐lasting limitations of traditional multistep synthesis, paving a fast and sustainable avenue to diversified metal/COF hybrids for heterogeneous catalysis and potentially other applications. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. Purpose:Telepractice is a growing service model that delivers aural rehabilitation to deaf and hard-of hearing children via telecommunications technology. Despite known benefits of telepractice, this delivery approach may increase patients' listening effort (LE) characterized as an allocation of cognitive resources toward an auditory task. The study tested techniques for collecting physiological measures of LE in normal-hearing (NH) children during remote (referred to as tele-) and in-person communication using the wearable Empatica E4 wristband. Method:Participants were 10 children (age range: 9–12 years old) who came to two tele- and two in-person weekly sessions, order counterbalanced. During each session, the children heard a short passage read by the clinical provider, completed an auditory passage comprehension task, and self-rated their effort as a part of the larger study. Measures of electrodermal activity and blood volume pulse amplitude were collected from the child E4 wristband. Results:No differences in child subjective, physiological measures of LE or passage comprehension scores were found between in-person sessions and telesessions. However, an effect of treatment duration on subjective and physiological measures of LE was identified. Children self-reported a significant increase in LE over time. However, their physiological measures demonstrated a trend indicating a decrease in LE. A significant association between subjective measures and the passage comprehension task was found suggesting that those children who reported more effort demonstrated a higher proportion of correct responses. Conclusions:The study demonstrated the feasibility of collection of physiological measures of LE in NH children during remote and in-person communication using the E4 wristband. The results suggest that measures of LE are multidimensional and may reflect different sources of, or cognitive responses to, increased listening demand. Supplemental Material:https://doi.org/10.23641/asha.27122064 
    more » « less
    Free, publicly-accessible full text available December 2, 2025
  6. Metal‐encapsulated covalent organic frameworks (metal/COFs) represent an emerging paradigm in heterogeneous catalysis. However, the time‐intensive (usually 4 or more days) and tedious multi‐step synthesis of metal/COFs remains a significant stumbling block for their broad application. To address this challenge, we introduce a facile microwave‐assistedin situmetal encapsulation strategy to cooperatively combine COF formation andin situpalladium(II) encapsulation in one step. With this unprecedented approach, we synthesize a diverse range of palladium(II)‐encapsulated COFs (termed Mw‐Pd/COF) in the air within just an hour. Notably, this strategy is scalable for large‐scale production (~0.5 g). Leveraging the high crystallinity, porosity, and structural stability, one representative Mw‐Pd/COF exhibits remarkable activity, functional group tolerance, and recyclability for the Suzuki‐Miyaura coupling reaction at room temperature, surpassing most previously reported Pd(II)/COF catalysts with respect to catalytic performance, preparation time, and synthetic ease. This microwave‐assistedin situmetal encapsulation strategy opens a facile and rapid avenue to construct metal/COF hybrids, which hold enormous potential in a multitude of applications including heterogeneous catalysis, sensing, and energy storage. 
    more » « less
    Free, publicly-accessible full text available December 18, 2025
  7. Heterozygous mutations in two genes encoding key regulators of development improve kernel row number in inbred and hybrid maize, revealing their potential for yield improvement. 
    more » « less
  8. Neonatal hypoxic-ischemic encephalopathy (HIE) occurs in 1.5 per 1000 live births, leaving affected children with long-term motor and cognitive deficits. Few animal models of HIE incorporate maternal immune activation (MIA) despite the significant risk MIA poses to HIE incidence and diagnosis. Our non-invasive model of HIE pairs late gestation MIA with postnatal hypoxia. HIE pups exhibited a trend toward smaller overall brain size and delays in the ontogeny of several developmental milestones. In adulthood, HIE animals had reduced strength and gait deficits, but no difference in speed. Surprisingly, HIE animals performed better on the rotarod, an assessment of motor coordination. There was significant upregulation of inflammatory genes in microglia 24 h after hypoxia. Single-cell RNA sequencing (scRNAseq) revealed two microglia subclusters of interest following HIE. Pseudobulk analysis revealed increased microglia motility gene expression and upregulation of epigenetic machinery and neurodevelopmental genes in macrophages following HIE. No sex differences were found in any measures. These results support a two-hit noninvasive model pairing MIA and hypoxia as a model for HIE in humans. This model results in a milder phenotype compared to established HIE models; however, HIE is a clinically heterogeneous injury resulting in a variety of outcomes in humans. The pathways identified in our model of HIE may reveal novel targets for therapy for neonates with HIE. 
    more » « less
  9. The use of covalent organic frameworks (COFs) for hazardous radioiodine capture has been highly sought after recently. However, the synthesis of high-performance COF adsorbents while circumventing the limitations of traditional solvothermal methods remains largely unexplored. Herein, we for the first time combine microwave-assisted synthesis and mixed-linker strategy to fabricate multivariate COF adsorbents (X% OMe-TFB-BD COFs, X% = 0, 33, 50, 67, and 100 mol%) with varying ratios of benzidine (BD) and 3,3′-dimethoxylbenzidine (BD-OMe) linkers in a rapid and facile manner. Adjusting the BD-OMe/BD mole ratios has led to distinct variations in density, crystallinity, porosity, morphology, and thermal/chemical stability of the resultant COFs, which empowered fine-tuning of the adsorption performance towards static iodine vapor. Remarkably, the 50 % OMe-TFB-BD COF exhibited an ultrahigh iodine adsorption capability of 8.2 g g−1, surpassing those of single-component COFs, mixed-linker COFs with other methoxy content, physically blended mixtures, and most existing COF adsorbents. Moreover, 50 % OMe-TFB-BD COF was recyclable seven times without obvious loss in its adsorption capacity. This work underscores the substantial potential of microwave-assisted mixed-linker strategy as a viable approach for developing multivariate COFs with shortened reaction times, precisely tailored pore environment, and tunable sorption properties, which are of considerable promise for environmental remediation and other niche applications. 
    more » « less